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The system of equations introduced by Lorenz to model turbulent con- 
vective flow is studied here for Rayleigh numbers r somewhat smaller than 
the critical value required for sustained chaotic behavior. In this regime the 
system is found to exhibit transient chaotic behavior. Some statistical 
properties of this transient chaos are examined numerically. A mean decay 
time from chaos to steady flow is found and its dependence upon r is 
studied both numerically and (very close to the critical r) analytically. 
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1. I N T R O D U C T I O N  

Chaotic  t ime-dependent behavior  is o f  interest in all sciences and has been 
most  studied in connect ion with fluid turbulence. In  an investigation o f  an 
idealized model  for the instability o f  convection o f  a fluid between two parallel 
plates, Lorenz introduced a system of  ordinary differential equations which, 
for  appropriate  parameter  values, exhibits "determinist ic nonperiodic flow." 
The solutions, though completely determined by initial conditions, vary with 
time in a seemingly irregular way. Furthermore,  small changes in initial 
conditions produce large differences in the long-term behavior o f  the solutions. 
Thus, to an observer of  the gross properties, the system appears to behave in 
a chaotic fashion. 
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The equat ions  in t roduced  by Lorenz  (z~ are  

d x / d t  = cry - crx ,  d y / d t  = - x z  + r x  - y ,  d z / d t  = x y  - b z  (1.1) 

(See also Marsden  and  McCracken  (z2) and  M a r s d e n Y  a~) Whi le  later  calcula-  
t ions (3,z~ show tha t  they may  not  be adequa te  to describe the instabi l i ty  o f  
convective flow in the geomet ry  for  which they were devised, they may  
descr ibe spiking in lasers 3 and  they may  adequate ly  describe a different 
convective fluid system, which we shall describe in Section 2. Fu r the rmore ,  
they fo rm a relat ively simple mode l  system in which a weal th  of  i r regular  
behav ior  m a y  be studied.  

This pape r  presents  deta i led numer ica l  studies of  the Lorenz  system in a 
" p r e t u r b u l e n t "  pa r ame te r  range.  We restr ict  ourselves to (r = 10 and  b = 8/3 
as d id  Lorenz.  F o r  r < 1, Lorenz  showed solut ion (0, 0, 0), represent ing no 
convect ion,  is stable, while for  r > 1 there are three cri t ical  poin ts :  (0, 0, 0), 
(~, a, r - 1), and  ( - ~ ,  -c~, r - 1), where ~ = [ b ( r  - 1)] l/2. F o r  r between 

1 and  r2 [where r2 = e(e + b + 3)(or - b - 1) -1, which is approx ima te ly  
24.74 for  the above  choice of  parameters ]  the two nonzero  solut ions are  stable 
and  at t ract ing,  and  for  r > r2, all three cri t ical  points  are u n s t a b l e )  Lorenz  
observed susta ined chaot ic  osci l lat ions for  r = 28 and he descr ibed in detai l  
the t ra jector ies  in phase space and  the strange a t t rac t ing  set in which they 
lie. 5 This  s t range a t t r ac to r  is observed  to be comple te ly  dominan t  for  r in the 
range jus t  above  r2 ~ 24.74 and  in par t icu la r  for  the case r = 28 s tudied by 
Lorenz.  A l m o s t  any  init ial  condi t ion  (Xo, Yo, zo) yields a t ra jec tory  tha t  
approaches  the s trange a t t rac tor .  I t  can actual ly  be observed for  values of  r 
sl ightly be low r2. In  a range r~ ~ 24.06 < r < r2 some t ra jector ies  tend  to 
the s trange a t t r ac to r  asymptot ica l ly ,  while others  tend  asympto t ica l ly  to 
the stable a t t rac t ing  points .  The former  t ra jector ies  are observed to oscillate 
i r regular ly  wi thout  ever sett l ing down.  Small  changes in initial  da t a  are 
observed to result  in large differences in the long- term pa t t e rn  o f  oscil lat ions.  
Hence we may  say tha t  for  r > rz we observe " sus t a ined  chaos ."  (Fo r  much  
larger  r > 50 the behav ior  begins to change and  we ignore this range.)  

a Haken(6) shows that an equivalent system can be derived for lasers, but it is not clear 
to us that the laser parameter corresponding to a is large enough for the system to 
oscillate chaotically. 

4 At r2 the system has an "inverted bifurcation." That is, since the rest point p becomes 
unstable as r increases past r2, no stable point or periodic orbit is seen near p. However, 
an inverted bifurcation is not necessary for the type of behavior we discuss in this paper. 
In particular, Marsden a n d  McCracken (z2~ have found that for small a the Hopf 
bifurcation for the Lorenz system is regular. 

5 A strange attractor may be thought of as an attracting invariant set that looks strange, 
that is, it is a bounded, connected set which is neither a point nor a periodic orbit nor 
a surface. The term was coined by Ruelle and Takens, (zS) but was not defined precisely. 



The Transit ion to Sustained Chaotic Behavior in the Lorenz Model  265 

The purpose  of  this pape r  is to describe the t rans i t ion  at  r l  and  in pa r t i cu la r  

to describe the dynamics  for  r jus t  below r l .  
I t  is shown by K a p l a n  and Yorke  (7'8~ tha t  at  r = r0 ~ 13.926 a t rans i t ion  

occurs (see also Robb ins  r for  a discussion of  this p re tu rbu len t  regime). 
Immedia te ly  above  ro there is an " e x c e p t i o n a l "  set (i.e., measure  zero, very 
small)  o f  chaot ic  orbi ts  which oscil late forever.  The chaot ic  set exists bu t  is 
uns table  for  r between ro and rl  : it is dynamica l ly  like a saddle,  so tha t  most  
initial  condi t ions  chosen close to, bu t  no t  on, the set will yield t ra jector ies  
which eventual ly diverge f rom the set. I f  an initial  condi t ion  (x, y, z) is 

chosen at  r andom f rom a ne ighborhood  of  this small  chaot ic  set, the p rob-  
abi l i ty  is zero tha t  it oscillates forever  wi thout  damping  out.  Though  this 
osci l la tory (or chaot ic)  set is thus not  direct ly  observable ,  its existence affects 
wha t  is observed in our  numer ica l  investigations,  especial ly for  r jus t  be low 
r~. The " d e c a y  t i m e "  for  orbi ts  near  the chaot ic  set is surpris ingly long for  

IO 

t 
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Fig. 1. This solution of (1.1) using r = 22 exhibits a transient chaotic behavior which 
suddenly switches to a pattern of oscillation that decays to the equilibrium x = 
+ l(r - 1)(8/3)] 1/2. On the average, chaotic behavior switches to damped behavior after 
about 60 oscillations. For larger r < rl ~- 24.06, chaotic behavior persists longer, over 
300 oscillations on the average for r = 23.0. 
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r just below rl and it is this "metastable" feature that we emphasize in this 
paper. Figure 1 illustrates the type of behavior we are discussing, in particular 
a sudden transition from irregular to damped oscillation. 

2. R E P R E S E N T A T I O N  OF S Y S T E M  V I A  A S C A L A R  F U N C T I O N  

Lorenz showed that there is an ellipsoid E in R a such that every tra- 
jectory would eventually cross into the ellipsoid and, once inside, would 
remain inside. That is, the ellipsoid is positively invariant under the differen- 
tial equations. Write 6(p, t) ~ R a for the position in R 3 of the solution of 
Eq. (1.1) at time t, starting from p ~ R a. For a set S c R 3 write ~b(S, t) for 
{~b(p, t ) :p  ~ S}. Denote the three-dimensional volume of S by Vol(S). 
Lorenz observed that the divergence of the right-hand side of Eq. (1.1) is 
constant, - ( e  + b + 1). Hence, 

Vol(~(S, t)) = e x p [ - t ( e  + b + 1)].Vol(S) (2.1) 

Let E be the positively invariant ellipsoid mentioned above. Since 
~(E, t) c E for t positive, it follows that 

~(E, tl) c ~ ( E ,  t2) if tl > t2 > 0  

Every trajectory tends asymptotically to the limiting set, 

= A t) 
t > 0  

as t tends to infinity, and it follows from (2.1) that this set has volume zero. 
The shape of E~ is extremely complex for r > ro ~ 13.9. For r > r0, E| 
contains some trajectories which oscillate forever, aperiodically, without 
ever settling down to constant or periodic behavior. For r ~ r~ ~ 24.06, the 
average time per oscillation observed in numerical experiments [i.e., the 
average time between successive maxima of a particular coordinate, say 
z(t)] may be taken as approximately 2/3. Considering this a characteristic 
time of the system, the corresponding volume contraction factor is 
exp[-(2/3)(10 + 8/3 + 1)] ~ 0.00013. Hence any initial point in the general 
region of interest yields a trajectory which rapidly approaches the set E=,  
possibly tending asymptotically to some point or subset of E~,  possibly 
eventually winding arbitrarily close to every point of a "s t range"  set E~.  

We numerically integrated the Lorenz system. Our differential equation 
solver was a divided difference form of  A d a m s - P E C E  local extrapolation, 
adapted from a program of Shampine. 

For  r > r~ it is easy to find trajectories which appear to oscillate 
irregularly, as long as they are followed numerically. This is indeed the behav- 
ior we would expect from theoretical investigations. On the other hand, for 
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r slightly less than rl similar irregular oscillations are observed, persisting for 
many cycles, but eventually they begin to damp down to one of the two stable 
equilibria x = y = +[b(r- 1)] 1/2 , z = r -  1. In particular, numerical 
studies show the x(t) coordinate changes sign occasionally throughout the 
irregular oscillations, but x(t) finally achieves a constant sign as the solutions 
tend to one of the equilibria. We define the final time T at which x changes 
sign to be the beginning of the decay and the end of the irregular period (see 
Fig. 1). If  no sign change exists, we let T = 0. For an initial point P = 
(x0, Yo, z0), we count the number of local maxima of the z coordinate of the 
trajectory during the irregular period (0, T). We call this the oscillation 
number N(P) of the point P. 

An apparent dichotomy appears for r slightly less than rl .  For  many 
initial points, N(P) = 0 or 1, and these are points whose trajectories begin 
to decay almost immediately. For  example, points near the stable critical 
points yield N(P) = 0 and points near the unstable critical point (0, 0, 0) 
yield N(P) = 1. The other type of point P yields a large N(P). For r = 23.0, 
for example, in trial runs the average value of N(P) is about 300, considering 
only points for which N(P) > 1. 

This apparent dichotomy is difficult to analyze by direct numerical 
integration of (1.1) because the average N(P) appears to tend to infinity 
rapidly as r ---> rl ~ 24.06 and excessive computer time is required, even at 
r = 23. Also, the trajectories are quite unstable; small changes in initial con- 
ditions produce large differences in oscillation pattern after the first several 
oscillations. Inevitable numerical errors result in uncertainties in the position 
and these uncertainties seem to double approximately on each oscillation 
until the error dominates the situation. Hence our calculations of N(P) are 
suggestive, but are not accurate. Also, simple computations of averages of 
N(P) do not yield an intuitive understanding of the transition at r = rl .  

Lorenz described a surprising technique for reducing the complexity of 
Eq. (1.1) from an ordinary differential equation in R 3 to a function of one 
variable. Solving the systems of equations numerically, he recorded the 
successive peaks of the coordinate z(t) (this choice of z is somewhat arbitrary.) 
Denoting the nth maximum of z(t) by M~, he plotted successive pairs 
(M~, M~+I) of maxima and found they lay along a sharply peaked, A- 
shaped curve. He reported t h a t "  within the limits of the round-off in tabulat- 
ing z"  he found a precise two-to-one relation between M~ and M~ + 1. That is, 
the graph appeared to describe a function M~+I = A(M~)=  A(r, M~). 
This relation does not hold exactly (even for the exact solutions), but devia- 
tions are quite small. If a second trajectory is chosen for the same r and its 
successive maxima ~r~ are calculated, the successive pairs ( ~ , ,  A~,+ 1) will 
lie along the same graph (except possibly for the first or second pair). When 
taking a long sequence of local maxima, the pairs seem to fill out the graph of 
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Fig. 2a. A solution of (1.1) with r = 24.06 was computed numerically and the first 
2000 peaks (denoted M~, with n = 1 ..... 2000) of z(t) were tabulated. The diagonal is 
drawn for comparison. The closer the trajectory comes to (0, 0, 0), the higher the next 
peak value will be, and the arrow indicates the largest possible value of M~+I, a value 
which results from an extremely close approach to (0, 0, 0). The system (1.1) has a 
periodic orbit with a peak z value of approximately 26.9. Almost every chaotic trajectory 
will give peak values of z that trace out the same figure. Compare with Fig. 3. 

A quite well. See Li and Yorke (9~ for a discussion of the possible behaviors 
of {A(M~)} when r = 28; see also SharkovskiiJ TM 

For r < rl we cannot generate the entire graph using a single trajectory 
since beyond some time, the trajectory tends asymptotically to a constant so 
that the pairs (M, ,  M,+I)  tend asymptotically to (r - 1, r - 1). To describe 
the graph of A(r, M,) in detail we have chosen numerous initial points and 
then chosen 35-45 such pairs of maxima. Figure 2 shows a typical case, 
r = 22.0. We exclude the first few maxima from consideration. These maxima 
are usually chosen from the irregular oscillation part of the curve. We then 
fitted a curve to the data using 2,(r, M) of the form 

•(m) = Zmax - A I I M  - mo[B(1 + A 2 ] M  - mo[ + A o [ M  - m0] 2) (2.2) 

where A~, A2, A3, fi, and Mo are to be determined using the least squares 
technique. As can be seen in the figures of Lorenz, the largest values observed 
for z are the local maxima that follow close approaches of the trajectory to 
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r =22.0 
Fig. 2b. The pattern of data (M~, M,+I) in Fig. 2a can be approximated by a curve, 
though this pattern has a small nonzero width. An approximating curve is shown for 
r = 22.0. Once a trajectory has a peak z value less than the peak for the periodic orbit 
(approximately 28.0 for r = 22.0) the sequence of peaks M~ decays monotonically as 
the oscillation damps down to equilibrium. To obtain a curve as given here a number of 
trajectories must be used together since for r = 22, on the average about 60 values of M~ 
are obtained before decay sets in. In this paper we are primarily interested in fitting the 
part of the curve to the right of the fixed point, since we wish to analyze the statistics of 
when decay sets in. 

(0, 0, 0). Consequent ly ,  the value Z=~x is chosen to be the first m a x i m u m  
when s tar t ing f rom a po in t  quite near  (0, 0, 0). In  o rder  to est imate the na ture  
o f  the peak,  several o f  the pairs  were chosen with second coord ina te  quite 
large.  Also,  there  is a t ra jec tory  which is per iodic  with x(t) of  cons tan t  sign. 
The successive max ima  o f  this orbi t  are constant .  We  ob ta ined  initial  poin ts  
tha t  gave an accurate  app rox ima t ion  to  this per iod ic  t ra jec tory  in o rder  to 
de termine  the local  m a x i m a  Mpe~ o f  the z coord ina te  o f  this t ra jectory ,  and  
we chose the unknown  pa ramete r s  A I ,  A2, As ,  8, and  Mo so tha t  

a(M.or) = M.o, 

since this po in t  p lays  a special role. W h e n  a m a x i m u m  M .  is found  such tha t  
M ,  < M~er the t ra jec tory  is in the process  o f  decaying  to a constant .  By 
contras t ,  the per iodic  orb i t  y ie lding Mper by  definit ion does not  decay. The  
pa ramete r s  were chosen for  the r values 21.0, 22.0, 23.0, 23.5, and  24.0. 
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Table I 

r Zmax Mo Mp~r fl 

24 40.724 33.795 27.002 0.285 
23.5 39.771 33.199 27.551 0.295 
23 38.819 32.602 27.839 0.299 
22 36.916 31.405 27.977 0.302 
21 35.016 30.210 27.765 0.310 

Tables I and II summarize the results of this procedure. On the average, 
34 points were used to fit the data for each value of r. A root-mean-squared 
deviation of less than 0.01 was obtained for each value of r. 

It is surprising that such a good fit as we obtained was achievable using 
the function A, which is assumed to be symmetric. We have no explanation 
for the symmetry in the data. 

The calculated coefficients Zm and 2140 are almost linear functions of r. 
The exponent fi is quite difficult to determine accurately. The fit is relatively 
insensitive to small changes in ft. The shape of A near the peak depends on 
trajectories that pass near (0, 0, 0), since, as mentioned earlier, the largest 
values of M,  occur after trajectories pass close to (0, 0, 0). The linearized 
system at (0, 0, 0) has three eigenvectors with eigenvalues hb = - b  and 
A~ = ( -or  - 1 + 0)/2, where p = [(a + 1) 2 - 4~(1 - r)]l/L In our range of 
investigation we have A_ < Ab < 0 < A§ Trajectories approaching (0, 0, 0) 
do so generically along the eigenvector corresponding to Ab. Those moving 
away from (0, 0, 0) do so along the eigenvector corresponding to A§ Heuristic 
arguments can be given that the actual fl should be the ratio lAb/h+ t. Such a 
trajectory will lie nearly in the plane having eigenvalues Ab and A§ as long as 
it is near (0, 0, 0). Hence it will temporarily nearly satisfy a linear planar 
differential equation 

Yl' = Abyl, y2 ' =  A+y2 

where coordinates are chosen so that (0, 1) and (1, 0) correspond to eigen- 

Table ll 

r A1 A2 A3 

24 5.936 0.0571 -0.00106 
23.5 5.779 0.0527 -0.00092 
23 5.591 0.0528 -0.00084 
22 5.165 0.0631 -0.00202 
21 4.788 0.665 -0.00240 
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vectors. Solutions of  this system satisfy yl( t )~+y2(t )a~ t = const, so a tra- 
jectory that passes near (0, 0) will approach through some point (e, 1) (for 
small but nonzero) and will depart through a point (_+ 1, r where 
r = ]el l~+ab I. Recall that trajectories through (+  1, 0) correspond to the 
trajectory that has a peak value z ~  and the corresponding solution of the 
nonlinear system can be expected to have a peak which is smaller than Zm~ 
by an amount  proportional to r 

At r = 24.0, I~,b/A+l = 0.251 + ,  as opposed to the table value of 0.2850. 
Hence the theoretical value would yield an even sharper peak in A than the 
one we found. The discrepancy may be due to the insensitivity of  A to /3 
and the fact that relatively large errors in /3 correspond to much smaller 
errors in the (M, ,  M,+z) pairs. 

3. L O N G - T E R M  S T A T I S T I C A L  B E H A V I O R  

The functions ,~(M) in Section 2 give us a tool for investigating the 
nature of  the temporary chaotic behavior illustrated in Fig. 1 for some r 
values. Iterating these functions allows us to circumvent the prohibitive 
expense of numerically integrating the differential equations through a large 
number of cases, involving altogether about  a million oscillations of  the 
system. We examine sequences 

M~+I = ~(M.) (3.1) 

In this section we report findings in terms of the normalization 

u = � 8 9  Mper) / (Mo - Mper) 

Corresponding to a sequence {M~} we have a corresponding sequence (u~} 
which lies in [0, 1] as long as it oscillates irregularly. We also write u~+l = 
A(u~) or ~(r, u~). In this notation A is symmetric about u = 1/2 and the peak 
value ~(1/2) > 1, while A(O) = 0 = A(1). We define t h e p e a k  width w = w(r)  
to be the size of the interval (with center u = 1/2) on which A(u) > 1 ; that  is, 

A(r, 1/2 - w/2) = 1 = A(r, 1/2 + w/2) 

(see Figure 2). The critical value rl is the first value for which A maps [0, 1] 
into [0, 1] and hence A(rl, 1/2) = 1. 

For  each of three values of  r we broke [0, 1] into Nr subintervals of  equal 
size. In each subinterval an initial point was chosen using a pseudo-random 
number generator with a uniform probability distribution. For  each of these 
initial values u0, we iterate /~, examining u, = A(r, u,_~), n = 1, 2 ..... 
(calculated in double precision) until a value u, ~ is obtained with u, > 1 or 
until n = 2000, whichever is smaller, and write n(uo) for this resulting 
integer. Hence for each of Nr values of u0, a kickout time n(uo) was obtained. 
The average value of n(uo) is what we report as the average decay time (n).  
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Table III 

Initial Kickout Peak 
points, Mean, probability, width at 

N~ <n> <n>- i ,~ = 1 

21 20,000 22.0 0.045 0.041 
22 20,000 59.6 0.017 0.014 
23 4,000 312.4 0.0032 0.0023 

Our  results are summarized in Table III.  N~ is smaller for larger r values 

because of the larger number  of iterations required. At  the end of this section 

we present a method for est imating how the average decay time depends on r 

for r slightly below r l ,  where any technique would be expensive. For  each 
r = 21, 22, and  23, we calculated the frequency distributions: ~(n) is the 

number  of initial points  out of the N~ chosen that  had kickout  times equal to n. 

~. (r,u) 
' FOR r=22.0, 

1.- ~ WIDTH OF PEAK IS 0.014 

~ r = 2 2 . 0  

.5- = . ~ 2 Z l . . U  

U 0 , , ~  
0 .5 1.0 

Fig. 3. After rescaling so that 2, is defined on [0, 1 ], the peak value of the curve, namely 
1(r, 1/2), exceeds 1 (provided r < rl "" 24.06). The "width of the peak" is the size of 
the interval of u values for which )t(r, u) > 1. This width is found to be roughly pro- 
portional to the reciprocal of the average number of chaotic oscillations of a solution 
prior to the onset of decay. 
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(See Fig. 3.) We hypothesized that this distribution would be the same as if 
the kickout times were exponentially distributed. A simple nonrigorous way 
to test this is to calculate the number of points whose kickout time exceeded 
n and to plot the logarithm against n. The points should--and did--lie nearly 
on a straight line. We tested further and more precisely the hypothesis that 
there is a probability p(r) of kickout per iteration which is independent of n. 
Choosingp(r) to be the reciprocal of average kickout time, the expected value 
of ~(n) would be Nrp(r)[1 - p ( r ) ]  ~. We aggregated the data and used a 
)r test to determine whether the deviations of the observed q$(n) from the 
expected values were reasonably small. The X 2 test demonstrated that all were 
acceptable at the 90% probability level. 

If points are distributed in [0, 1] with some initial probability density f0, 
then the images A(uo) that remain in [0, 1] will have some (in general, other) 
probability density we may denote f l .  In our case uo was uniformly distributed 
so thatfo = 1. We may similarly wri tef ,  for the density of nth iterate images 
h"(Uo) that remain in [0, 1];f~ is normalized so that fo 1 f~ = 1. If (1/2 - w/2, 
t/2 + w/2) denotes the interval where A(u) > 1, then II~ = fli2+w/2 t~ Jl/2-w/2 J~ is the 

probability that A"(u0) will be in the peak width interval, given that it is in 
[0, 1]. Hence IIn is the probability that a point which has survived n iterations 
will be kicked out on the (n + 1)th iteration. Exponential decay will be 
observed if II~ tends rapidly to some constant II* > 0. We define 1/II* to 
be the mean kickout time. Pianigiani and Yorke (15~ have proved that .f~ 
converges to a " s m o o t h "  (infinitely differentiable) limiting density f *  and 
this limit is independent of the initial density f0, as long as f0 is continuous 
and strictly positive. While Pianigiani and Yorke deal with more general 
cases, they show the conclusion is valid if h satisfies the following properties: 

1. A: [0, 1 ] -+R.  
2. There are numbers 0 = ao < al < ... < a~ = 1 such that h is infinitely 

differentiable on each (ai-1, a0 and (0, 1) c A((ai_l, a0) for i = 1 .... , k. 
3. There are L1 > L2 > 0 such that Lz >i ]dA(x)/dx[ >1 L2 whenever 

A(x) ~ (0, 1). 

For our situation az = 1/2 and a2 = 1. The hypotheses are also satisfied 
by a map which appears quite different, namely h(x) = rx(l - x) provided 
r > 2 = 5 z/2. The limit f *  depends o n / / a n d  so depends on r. Hence 

f 
l / 2  - w/2 

II*(r) = lira II ,  = f *  > 0 
J l / 2  -w12  

When the initial distribution is the uniform distribution (i.e., fo -- 1), we 
observe a rapid relaxation, f~-->f* in the sense that f If~ - f * l  decreases by 
a factor of approximately 0.9 per iteration up to n = 20. Although these 
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300 

200 

100 

50 100 150 n 
Fig. 4. Frequency distribution of kickout time n for r = 22.0. The exponential 

(Nr/IX) exp(-n//x), where N~ = 20,000 and/x = 59.6, is plotted for comparison. 

observations are crude, they do indicate that the relaxation of IL 
to zero is rapid in comparison with the kickout time. Figure 4 shows a small 
initial deviation from a good exponential decay for n up to 5 or 10. We 
attribute this to the relaxation of the shape off~ to f* .  

In describing the transition at r = rl it is useful to have an analytical 
expression giving the approximate dependence of the average kickout time 
upon r for r close to rl. From Eq. (3.1) we see that the reciprocal of the 
kickout time depends upon both the peak width and the limiting distribution 
f *  in the interval of the peak. We can rewrite Eq. (4.1) 

II*(r) = ( f * ( r ) ) w ( r )  

where ( f * ( r ) )  is the average o f f *  over the peak width. If  we assume that 
<f*(r))  tends to a finite, nonzero constant as r ---> r~, then for r sufficiently 
close to r~ 

H*(r) ~ ( f * ( r l ) ) w ( r )  

and the chief dependence of the kickout time upon r will be due to the 
decrease of the peak width to zero as r tends to rl. 

The peak width can be estimated from the equation for the curve A(r, u). 
We have been dealing specifically with the normalized form of Eq. (2.2) 

A = Amax -- lU -- 1/21a(Ax ' + AI 'A2 ' Iu  - 1/21 + Ax'A3 '[u  - 1/212) 
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where km~x, /3, and the coefficients A{ are functions of  r. I f  we let x = 
]u - �89 we have a part icular  equat ion of  the approx imate  fo rm 

A(x, r)  = ~m~x(r) -- xB[AI ' (r)  + oxO)] (3.2) 

where ox(1) denotes a funct ion which tends to zero as x - +  0. In  general 
ox(-..) denotes terms of  higher order  than whatever  is inside the parentheses.  
The  following a rgument  will depend only upon  the behavior  of  I near  the peak  
and so will hold for  functions other  than  the explicit fo rm used in Section 2. 
We now write A ( r )  for  Al ' ( r ) .  Assume k has the fo rm in Eq. (3.2), where 
A(r l )  > 0. Fo r  r < r l ,  km~x > t and  for  r = ra, k r ~  = 1, and we assume 
( d / d r ) k ~ ( r )  r 0 at  r l .  Write 

f~(x)  = x [ A ( r )  + o(1)1 lib 

Not ice  (d/dx)f~(O) = A(r~) 1I~, so f~ has an inverse for  x near  zero. 
To  solve for  the width w, i.e., 

k(r, w/2) = 1, r ~ rl 

we write Eq. (3.2) as 1 = h ~ x ( r )  - f i ( w / 2 )  e. Hence  

Z(w/2) = [ ~ x ( r ) -  1] I~B 

w/2 = f r  - 11 l/B) 

1 
- f / (O)  {[km~(r) - 11 ~/e + o u_~([km~x(r) - 1]l/B)} 

= A(r l )  - 1/8 [~d 3 lIB , ~ x ( r ~ ) ( r  - rl)]  [1 + %_ , (1 ) ]  

as r - +  r~. Hence  the kickout  t ime is approximate ly  equal to ~(r~ - r )  -~/e, 
where ~ is a constant.  For  nota t ional  simplicity we have treated/3 as a constant,  
but  the a rgument  is easily adapted  to allow /3 to depend on r, provided 
/3(r~) va 0, and the conclusion is unchanged.  

This approx imat ion  will hold only for  r sufficiently close to rz. For  the 
ra.nge of  values covered in Table I I I ,  the validity of  the approx imat ion  is 
exceeded. 

4.  D I S C U S S I O N  

In  the preceding work  we have discussed the metas table  chaotic behavior  
of  the Lorenz  model  with Rayleigh number  r somewhat  below the critical 
value r2 at  which an inverted bifurcat ion occurs. At  these lower values the 
system exhibits metastable  chaos  as shown in Fig. 1. After  a large number  of  
i rregular  oscillations, the system damps  down to one of  its two stable states. 
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The "l ifet ime" in the chaotic states depends on initial values and is distrib- 
uted exponentially. We have examined this behavior numerically and have 
presented an analytic estimate of the decay time for r just below rl .  This decay 
time tends rapidly to infinity as r -+ rl ~ 24.06. For r t> r~ sustained chaotic 
oscillations can be observed. The decay time is proportional to (r~ - r)-l/B, 
where 1/t3 is between 3.5 and 4 for our choice of a and b. The metastable 
chaotic behavior for r < r~ is a precursor of the situation for r > r~, in which 
there are two coexisting types of regimes, a chaotic regime and a steady state 
(laminar) regime. For  r <~ rl our metastable chaos might be thought of as a 
leaky chaos in which trajectories can pass through a small "window"  in the 
chaotic region and on into the stationary region. 

For  historical reasons we have chosen the "canonical"  Lorenz model 
parameters, which seem to be widely used in the literature of numerical studies 
of the Lorenz equations3 ~ 

In general one might seek out metastable states by varying parameters 
in physical systems where steady-state and chaotic regimes coexist. The 
chaotic regime may cease to exist, as some controlling parameter is varied, 
by changing into a metastable chaotic regime. Creveling et  al. ~2~ decreased the 
Rayleigh number past a critical value (our r~). They passed from an unstable 
to a stable flow situation, yet they observed irregular oscillations which per- 
sisted sometimes as long as 2 h (corresponding to 100-200 oscillations). This 
is the sort of behavior which would be expected if metastable chaos is 
occurring. Although the boundary conditions used in that experiment were 
such that the Lorenz equations do not describe the system, there is no reason 
to expect that metastable chaos is peculiar to the Lorenz model or even to 
systems in which an inverted bifurcation occurs. We suggest that Creveling 
and his co-workers might have observed metastable chaos. 

In what other types of systems might metastable chaos occur ? Suitable 
systems are those in which at least two stable states coexist, one of which 
shows regular, easily describable time dependence (steady state or periodic) 
while another one is turbulent. Such will be the case if the system has a finite- 
amplitude instability so that a perturbation of minimum size is needed to 
knock the system from one regime to the other. The existence of a finite- 
amplitude instability guarantees the existence of at least two regimes. 
Similarly, systems with hysteresis have the property that at least two regimes 
coexist, since the state that is observed depends on the history of the system. 
In particular, pipe flow and channel flow exhibit laminar states which can be 
knocked into turbulent regimes by small though finite perturbations. And in 
his study of Couette flow between cylinders rotating in opposite directions 
Coles ~1~ has observed situation where turbulent and laminar regimes coexist. 
In these situations metastable chaos might be observed as the system is brought 
from a stable turbulent regime to a stable steady state. (As one can see in this 
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paper ,  it might,  in pract ice,  be difficult to  measure  precisely the cri t ical  
pa rame te r s  for  a tu rbulen t - to-s teady-s ta te  t ransi t ion,  since it is poss ible  to 

have metas tab le  chaos with such a long lifetime tha t  it  is v i r tual ly  in- 
dis t inguishable  f rom susta ined chaos.)  
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